diff --git a/.drone.yml b/.drone.yml index ad47f07..529cf7f 100644 --- a/.drone.yml +++ b/.drone.yml @@ -12,7 +12,7 @@ steps: commands: - chmod +x kill_ui.sh - ./kill_ui.sh - - cp ./chyoso_toolkit_ui.py /home/tmfc/apps/whisper/ + - cp ./*.py /home/tmfc/apps/whisper/ - cp ./requirements.txt /home/tmfc/apps/whisper/ - cd /home/tmfc/apps/whisper - pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple -r requirements.txt diff --git a/got-ocr.py b/got-ocr.py new file mode 100644 index 0000000..8b667da --- /dev/null +++ b/got-ocr.py @@ -0,0 +1,18 @@ +from transformers import AutoModel, AutoTokenizer +import torch + +from modeling_GOT import GOTQwenForCausalLM + +tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) +model = GOTQwenForCausalLM.from_pretrained('ucaslcl/GOT-OCR2_0', low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, + pad_token_id=151643).eval() + +model.to(device='cuda', dtype=torch.bfloat16) + + +# input your test image +image_file = 'img.png' + +# plain texts OCR +res = model.chat(tokenizer, image_file, ocr_type='ocr') +print(res) diff --git a/got_vision_b.py b/got_vision_b.py new file mode 100644 index 0000000..4cc0bd8 --- /dev/null +++ b/got_vision_b.py @@ -0,0 +1,460 @@ +import torch +import torch.nn.functional as F +from typing import Optional, Tuple, Type +from functools import partial +import torch.nn as nn +from typing import Type + + +class MLPBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +class ImageEncoderViT(nn.Module): + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) + ) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False) + self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + for blk in self.blocks: + x = blk(x) + + x = self.neck(x.permute(0, 3, 1, 2)) + x = self.net_2(x) + x = self.net_3(x) + + return x + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + + attn = attn.softmax(dim=-1) + x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) + x = self.proj(x) + + return x + + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x + + +def build_GOT_vit_b(checkpoint=None): + return _build_GOT_vision( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + +def _build_GOT_vision( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + image_encoder = ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ) + + return image_encoder diff --git a/modeling_GOT.py b/modeling_GOT.py new file mode 100644 index 0000000..9f52f25 --- /dev/null +++ b/modeling_GOT.py @@ -0,0 +1,881 @@ +from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from typing import List, Optional, Tuple, Union +from transformers.cache_utils import Cache +import requests +from PIL import Image +from io import BytesIO +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss +from got_vision_b import build_GOT_vit_b +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +import dataclasses +### + +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = '' +DEFAULT_IM_START_TOKEN = '' +DEFAULT_IM_END_TOKEN = '' + +from enum import auto, Enum +class SeparatorStyle(Enum): + """Different separator style.""" + SINGLE = auto() + TWO = auto() + MPT = auto() + + +@dataclasses.dataclass +class Conversation: + """A class that keeps all conversation history.""" + system: str + roles: List[str] + messages: List[List[str]] + offset: int + sep_style: SeparatorStyle = SeparatorStyle.SINGLE + sep: str = "<|im_end|>" + sep2: str = None + version: str = "Unknown" + + skip_next: bool = False + + def get_prompt(self): + if self.sep_style == SeparatorStyle.SINGLE: + ret = self.system + self.sep + '\n' + for role, message in self.messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + self.sep + else: + ret += role + ":" + return ret + elif self.sep_style == SeparatorStyle.TWO: + seps = [self.sep, self.sep2] + ret = self.system + seps[0] + for i, (role, message) in enumerate(self.messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + seps[i % 2] + else: + ret += role + ":" + return ret + if self.sep_style == SeparatorStyle.MPT: + if self.system: + ret = self.system + self.sep + else: + ret = '' + for role, message in self.messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + message + self.sep + else: + ret += role + return ret + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + + def append_message(self, role, message): + self.messages.append([role, message]) + + def copy(self): + return Conversation( + system=self.system, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + sep=self.sep, + sep2=self.sep2) + + + +class KeywordsStoppingCriteria(StoppingCriteria): + def __init__(self, keywords, tokenizer, input_ids): + self.keywords = keywords + self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords] + self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1] + self.tokenizer = tokenizer + self.start_len = None + self.input_ids = input_ids + + def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: + if self.start_len is None: + self.start_len = self.input_ids.shape[1] + else: + for keyword_id in self.keyword_ids: + if output_ids[0, -1] == keyword_id: + return True + outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0] + for keyword in self.keywords: + if keyword in outputs: + return True + return False + + +class GOTImageEvalProcessor: + def __init__(self, image_size=384, mean=None, std=None): + if mean is None: + mean = (0.48145466, 0.4578275, 0.40821073) + if std is None: + std = (0.26862954, 0.26130258, 0.27577711) + + self.normalize = transforms.Normalize(mean, std) + + self.transform = transforms.Compose( + [ + transforms.Resize( + (image_size, image_size), interpolation=InterpolationMode.BICUBIC + ), + transforms.ToTensor(), + self.normalize, + ] + ) + def __call__(self, item): + return self.transform(item) + + + +class GOTConfig(Qwen2Config): + model_type = "GOT" + + +class GOTQwenModel(Qwen2Model): + config_class = GOTConfig + + def __init__(self, config: Qwen2Config): + super(GOTQwenModel, self).__init__(config) + + self.vision_tower_high = build_GOT_vit_b() + + self.mm_projector_vary = nn.Linear(1024, 1024) + + + def initialize_vision_modules( + self, + vision_tower, + pretrained_stage1_model=None, + freeze_vision_tower=False, + use_im_start_end=False, + vision_select_layer=-1, + dtype=torch.float16, + device="cuda" + ): + + + image_processor_high = GOTImageEvalProcessor(image_size=1024) + + self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device) + + self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device) + + + image_token_len = 256 + + self.config.vision_tower = vision_tower + self.config.image_token_len = image_token_len + + self.config.use_im_start_end = True + + self.config.vision_select_layer = vision_select_layer + self.config.freeze_vision_tower = freeze_vision_tower + + return dict( + image_processor_high=image_processor_high, + image_token_len=image_token_len, + ) + + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + + # HACK: replace back original embeddings for LLaVA pretraining + orig_embeds_params = getattr(self, 'orig_embeds_params', None) + if orig_embeds_params is not None: + with torch.no_grad(): + self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + + vision_tower_high = getattr(self, 'vision_tower_high', None) + + + if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: + use_im_start_end = getattr(self.config, "use_im_start_end", -1) + + vision_select_layer = getattr(self.config, "vision_select_layer", -1) + im_patch_token = getattr(self.config, "im_patch_token", -1) + im_start_token = getattr(self.config, "im_start_token", -1) + im_end_token = getattr(self.config, "im_end_token", -1) + freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False) + + im_patch_token = 151859 + + im_start_token = 151857 + + im_end_token = 151858 + + image_features = [] + + for image in images: + P, C, H, W = image.shape + if P == 1: + with torch.set_grad_enabled(False): + cnn_feature = vision_tower_high(image) + cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024 + image_feature = self.mm_projector_vary(cnn_feature) + image_features.append(image_feature) + + else: + image_patches = torch.unbind(image) + image_patches_features = [] + for image_patch in image_patches: + image_p = torch.stack([image_patch]) + + with torch.set_grad_enabled(False): + cnn_feature_p = vision_tower_high(image_p) + cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1) + image_feature_p = self.mm_projector_vary(cnn_feature_p) + image_patches_features.append(image_feature_p) + image_feature = torch.cat(image_patches_features, dim=1) + image_features.append(image_feature) + + + dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) + dummy_image_features = dummy_image_features_2 + use_im_start_end = True + new_input_embeds = [] + for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features): + if (cur_input_ids == im_patch_token).sum() == 0: + cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() + new_input_embeds.append(cur_input_embeds) + continue + + if use_im_start_end: + if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum(): + raise ValueError("The number of image start tokens and image end tokens should be the same.") + + image_start_tokens = torch.where(cur_input_ids == im_start_token)[0] + for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features): + per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device) + num_patches = per_cur_image_features.shape[0] + + if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token: + raise ValueError("The image end token should follow the image start token.") + + cur_input_embeds = torch.cat( + ( + cur_input_embeds[:image_start_token_pos+1], + per_cur_image_features, + cur_input_embeds[image_start_token_pos + num_patches + 1:] + ), + dim=0 + ) + + + new_input_embeds.append(cur_input_embeds) + else: + raise NotImplementedError + + inputs_embeds = torch.stack(new_input_embeds, dim=0) + + return super(GOTQwenModel, self).forward( + input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, + inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids, + output_attentions=output_attentions, output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + + +class GOTQwenForCausalLM(Qwen2ForCausalLM): + config_class = GOTConfig + # supports_gradient_checkpointing = True + + def __init__(self, config): + super(Qwen2ForCausalLM, self).__init__(config) + self.model = GOTQwenModel(config) + + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + + ) -> Union[Tuple, CausalLMOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + images=images, + return_dict=return_dict + + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + # logits + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "images": kwargs.get("images", None), + } + ) + return model_inputs + + def initialize_vision_tokenizer( + self, + tokenizer, + freeze_lm_model=False, + pretrained_stage1_model=None, + device="cuda" + ): + config = self.get_model().config + + + self.resize_token_embeddings(len(tokenizer)) + + config.im_patch_token = 151859 + + config.use_im_start_end = True + + if config.use_im_start_end: + self.resize_token_embeddings(len(tokenizer)) + config.im_start_token, config.im_end_token = 151857, 151858 + + def load_image(self, image_file): + if image_file.startswith('http') or image_file.startswith('https'): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert('RGB') + else: + image = Image.open(image_file).convert('RGB') + return image + + def disable_torch_init(self): + """ + Disable the redundant torch default initialization to accelerate model creation. + """ + import torch + setattr(torch.nn.Linear, "reset_parameters", lambda self: None) + setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) + + def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False): + + self.disable_torch_init() + + + image_processor_high = GOTImageEvalProcessor(image_size=1024) + + use_im_start_end = True + + image_token_len = 256 + + if gradio_input: + image = image_file.copy() + else: + image = self.load_image(image_file) + + w, h = image.size + + if ocr_type == 'format': + qs = 'OCR with format: ' + else: + qs = 'OCR: ' + + if ocr_box: + bbox = eval(ocr_box) + if len(bbox) == 2: + bbox[0] = int(bbox[0]/w*1000) + bbox[1] = int(bbox[1]/h*1000) + if len(bbox) == 4: + bbox[0] = int(bbox[0]/w*1000) + bbox[1] = int(bbox[1]/h*1000) + bbox[2] = int(bbox[2]/w*1000) + bbox[3] = int(bbox[3]/h*1000) + if ocr_type == 'format': + qs = str(bbox) + ' ' + 'OCR with format: ' + else: + qs = str(bbox) + ' ' + 'OCR: ' + + if ocr_color: + if ocr_type == 'format': + qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: ' + else: + qs = '[' + ocr_color + ']' + ' ' + 'OCR: ' + + if use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + + conv_mpt = Conversation( + system="""<|im_start|>system + You should follow the instructions carefully and explain your answers in detail.""", + # system = None, + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", + ) + + conv = conv_mpt.copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + if print_prompt: + print(prompt) + + inputs = tokenizer([prompt]) + + image_tensor_1 = image_processor_high(image) + + input_ids = torch.as_tensor(inputs.input_ids).cuda() + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) + + if stream_flag: + with torch.autocast("cuda", dtype=torch.bfloat16): + output_ids = self.generate( + input_ids, + images=[image_tensor_1.unsqueeze(0).half().cuda()], + do_sample=False, + num_beams = 1, + no_repeat_ngram_size = 20, + streamer=streamer, + max_new_tokens=4096, + stopping_criteria=[stopping_criteria] + ) + else: + with torch.autocast("cuda", dtype=torch.bfloat16): + output_ids = self.generate( + input_ids, + images=[image_tensor_1.unsqueeze(0).half().cuda()], + do_sample=False, + num_beams = 1, + no_repeat_ngram_size = 20, + # streamer=streamer, + max_new_tokens=4096, + stopping_criteria=[stopping_criteria] + ) + + outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() + + if outputs.endswith(stop_str): + outputs = outputs[:-len(stop_str)] + outputs = outputs.strip() + response_str = outputs + + if render: + print('==============rendering===============') + from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table + + if '**kern' in outputs: + import verovio + tk = verovio.toolkit() + tk.loadData(outputs) + tk.setOptions({"pageWidth": 2100, "footer": 'none', + 'barLineWidth': 0.5, 'beamMaxSlope': 15, + 'staffLineWidth': 0.2, 'spacingStaff': 6}) + tk.getPageCount() + svg = tk.renderToSVG() + svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"") + + svg_to_html(svg, save_render_file) + + if ocr_type == 'format' and '**kern' not in outputs: + + + if '\\begin{tikzpicture}' not in outputs: + html_path_2 = save_render_file + right_num = outputs.count('\\right') + left_num = outputs.count('\left') + + if right_num != left_num: + outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.') + + + outputs = outputs.replace('"', '``').replace('$', '') + + outputs_list = outputs.split('\n') + gt= '' + for out in outputs_list: + gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' + + gt = gt[:-2] + + + lines = content_mmd_to_html + lines = lines.split("const text =") + new_web = lines[0] + 'const text =' + gt + lines[1] + + else: + html_path_2 = save_render_file + outputs = outputs.translate(translation_table) + outputs_list = outputs.split('\n') + gt= '' + for out in outputs_list: + if out: + if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out: + while out[-1] == ' ': + out = out[:-1] + if out is None: + break + + if out: + if out[-1] != ';': + gt += out[:-1] + ';\n' + else: + gt += out + '\n' + else: + gt += out + '\n' + + + lines = tik_html + lines = lines.split("const text =") + new_web = lines[0] + gt + lines[1] + + with open(html_path_2, 'w') as web_f_new: + web_f_new.write(new_web) + return response_str + + def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True): + + def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): + best_ratio_diff = float('inf') + best_ratio = (1, 1) + area = width * height + for ratio in target_ratios: + target_aspect_ratio = ratio[0] / ratio[1] + ratio_diff = abs(aspect_ratio - target_aspect_ratio) + if ratio_diff < best_ratio_diff: + best_ratio_diff = ratio_diff + best_ratio = ratio + elif ratio_diff == best_ratio_diff: + if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: + best_ratio = ratio + # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') + return best_ratio + + orig_width, orig_height = image.size + aspect_ratio = orig_width / orig_height + + # calculate the existing image aspect ratio + target_ratios = set( + (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if + i * j <= max_num and i * j >= min_num) + # print(target_ratios) + target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) + + # find the closest aspect ratio to the target + target_aspect_ratio = find_closest_aspect_ratio( + aspect_ratio, target_ratios, orig_width, orig_height, image_size) + + # print(target_aspect_ratio) + # calculate the target width and height + target_width = image_size * target_aspect_ratio[0] + target_height = image_size * target_aspect_ratio[1] + blocks = target_aspect_ratio[0] * target_aspect_ratio[1] + + # resize the image + resized_img = image.resize((target_width, target_height)) + processed_images = [] + for i in range(blocks): + box = ( + (i % (target_width // image_size)) * image_size, + (i // (target_width // image_size)) * image_size, + ((i % (target_width // image_size)) + 1) * image_size, + ((i // (target_width // image_size)) + 1) * image_size + ) + # split the image + split_img = resized_img.crop(box) + processed_images.append(split_img) + assert len(processed_images) == blocks + if use_thumbnail and len(processed_images) != 1: + thumbnail_img = image.resize((image_size, image_size)) + processed_images.append(thumbnail_img) + return processed_images + + + def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False): + # Model + self.disable_torch_init() + multi_page=False + + + image_processor_high = GOTImageEvalProcessor(image_size=1024) + + use_im_start_end = True + + + image_token_len = 256 + + image_list = [] + + # if len(image_file_list)>1: + # multi_page = True + + if multi_page: + qs = 'OCR with format across multi pages: ' + # only for png files + # import glob + # from natsort import natsorted + # patches = glob.glob(image_file + '/*png') + patches = image_file + # patches = natsorted(patches) + sub_images = [] + for sub_image in patches: + sub_images.append(self.load_image(sub_image)) + + ll = len(patches) + # print(patches) + # print("len ll: ", ll) + + else: + if ocr_type == 'format': + qs = 'OCR with format upon the patch reference: ' + else: + qs = 'OCR upon the patch reference: ' + if gradio_input: + img = image_file.copy() + else: + img = self.load_image(image_file) + sub_images = self.dynamic_preprocess(img) + ll = len(sub_images) + + for image in sub_images: + image_tensor_1 = image_processor_high(image) + image_list.append(image_tensor_1) + + + image_list = torch.stack(image_list) + + print('====new images batch size======: \n',image_list.shape) + + + if use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + + conv_mpt = Conversation( + system="""<|im_start|>system + You should follow the instructions carefully and explain your answers in detail.""", + # system = None, + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", + ) + + conv = conv_mpt.copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + if print_prompt: + print(prompt) + + inputs = tokenizer([prompt]) + + input_ids = torch.as_tensor(inputs.input_ids).cuda() + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) + + if stream_flag: + with torch.autocast("cuda", dtype=torch.bfloat16): + output_ids = self.generate( + input_ids, + images=[image_list.half().cuda()], + do_sample=False, + num_beams = 1, + # no_repeat_ngram_size = 20, + streamer=streamer, + max_new_tokens=4096, + stopping_criteria=[stopping_criteria] + ) + else: + with torch.autocast("cuda", dtype=torch.bfloat16): + output_ids = self.generate( + input_ids, + images=[image_list.half().cuda()], + do_sample=False, + num_beams = 1, + # no_repeat_ngram_size = 20, + # streamer=streamer, + max_new_tokens=4096, + stopping_criteria=[stopping_criteria] + ) + + outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() + + if outputs.endswith(stop_str): + outputs = outputs[:-len(stop_str)] + outputs = outputs.strip() + response_str = outputs + + if render: + print('==============rendering===============') + from .render_tools import content_mmd_to_html + html_path_2 = save_render_file + right_num = outputs.count('\\right') + left_num = outputs.count('\left') + + if right_num != left_num: + outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.') + + + outputs = outputs.replace('"', '``').replace('$', '') + + outputs_list = outputs.split('\n') + gt= '' + for out in outputs_list: + gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' + + gt = gt[:-2] + + lines = content_mmd_to_html + lines = lines.split("const text =") + new_web = lines[0] + 'const text =' + gt + lines[1] + + with open(html_path_2, 'w') as web_f_new: + web_f_new.write(new_web) + + return response_str \ No newline at end of file diff --git a/render_tools.py b/render_tools.py new file mode 100644 index 0000000..3f5dceb --- /dev/null +++ b/render_tools.py @@ -0,0 +1,90 @@ +punctuation_dict = { + ",": ",", + "。": ".", + +} +translation_table = str.maketrans(punctuation_dict) + + +def svg_to_html(svg_content, output_filename): + html_content = f""" + + + + + + SVG Embedded in HTML + + + + {svg_content} + + + + """ + + with open(output_filename, 'w') as file: + file.write(html_content) + + +content_mmd_to_html = """ + + + Title + + + + + +
+ + +""" + +tik_html = """ + + + + + + + +Document + + + + + + +""" + +# print(tik_html) \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 45093b7..2c68e87 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1 +1,8 @@ -gradio==4.44.0 \ No newline at end of file +gradio==4.44.0 +torch==2.0.1 +torchvision==0.15.2 +transformers==4.37.2 +tiktoken==0.6.0 +verovio==4.3.1 +accelerate==0.28.0 +numpy=1.26.4